227 research outputs found

    Defect propagation in one-, two-, and three-dimensional compounds doped by magnetic atoms

    Full text link
    Inelastic neutron scattering experiments were performed to study manganese(II) dimer excitations in the diluted one-, two-, and three-dimensional compounds CsMn(x)Mg(1-x)Br(3), K(2)Mn(x)Zn(1-x)F(4), and KMn(x)Zn(1-x)F(3) (x<0.10), respectively. The transitions from the ground-state singlet to the excited triplet, split into a doublet and a singlet due to the single-ion anisotropy, exhibit remarkable fine structures. These unusual features are attributed to local structural inhomogeneities induced by the dopant Mn atoms which act like lattice defects. Statistical models support the theoretically predicted decay of atomic displacements according to 1/r**2, 1/r, and constant (for three-, two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect. The observed fine structures allow a direct determination of the local exchange interactions J, and the local intradimer distances R can be derived through the linear law dJ/dR.Comment: 22 pages, 5 figures, 2 table

    Magnetic excitations in the spin-trimer compounds Ca3Cu3-xNix(PO4)4 (x=0,1,2)

    Full text link
    Inelastic neutron scattering experiments were performed for the spin-trimer compounds Ca3Cu3-xNix(PO4)4 (x=0,1,2) in order to study the dynamic magnetic properties. The observed excitations can be associated with transitions between the low-lying electronic states of linear Cu-Cu-Cu, Cu-Cu-Ni, and Ni-Cu-Ni trimers which are the basic constituents of the title compounds. The exchange interactions within the trimers are well described by the Heisenberg model with dominant antiferromagnetic nearest-neighbor interactions J. For x=0 we find JCu-Cu=-4.74(2) meV which is enhanced for x=1 to JCu-Cu=-4.92(6) meV. For x=1 and x=2 we find JCu-Ni=-0.85(10) meV and an axial single-ion anisotropy parameter DNi=-0.7(1) meV. While the x=0 and x=1 compounds do not exhibit long-range magnetic ordering down to 1 K, the x=2 compound shows antiferromagnetic ordering below TN=20 K, which is compatible with the molecular-field parameter 0.63(12) meV derived by neutron spectroscopy.Comment: 22 pages (double spacing), 1 table, 9 figures, Submitted to Phys. Rev. B (2007

    Effect of light Sr doping on the spin-state transition in LaCoO_3

    Full text link
    We present an inelastic neutron scattering study of the low energy crystal-field excitations in the lightly doped cobalt perovskite La_0.998Sr_0.002CoO_3. In contrast to the parent compound LaCoO_3 an inelastic peak at energy transfer ~0.75 meV was found at temperatures below 30 K. This excitation apparently corresponds to a transition between a ground state orbital singlet and a higher excited orbital doublet, originating from a high-spin triplet split by a small trigonal crystal field. Another inelastic peak at an energy transfer ~0.6 meV was found at intermediate temperatures starting from T > 30 K. This confirms the presence of a thermally induced spin-state transition from the low-spin Co^3+ to a magnetic high-spin state in the non-disturbed LaCoO_3 matrix. We suggest that hole doping of LaCoO_3 leads to the creation of a magnetic polaron and hence to the low-to-high spin state transition on the relevant Co sites.Comment: 4 pages, 2 figures; based on a talk given at ICM'06, Kyoto; to appear in JMM

    Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states

    Get PDF
    A gradual spin-state transition occurs in LaCoO3 around T~80-120 K, whose detailed nature remains controversial. We studied this transition by means of inelastic neutron scattering (INS), and found that with increasing temperature an excitation at ~0.6 meV appears, whose intensity increases with temperature, following the bulk magnetization. Within a model including crystal field interaction and spin-orbit coupling we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. We further discuss the nature of the magnetic excited state in terms of intermediate-spin (IS, S=1) vs. high-spin (HS, S=2) states. Since the g-factor obtained from the field dependence of the INS is g~3, the second interpretation looks more plausible.Comment: 10 pages, 4 figure
    • 

    corecore